
A Demonstration of Continuous Interaction with Elckerlyc

Herwin van Welbergen, Dennis Reidsma, Job Zwiers
Human Media Interaction

University of Twente, the Netherlands
{welberge|dennisr|zwiers}@ewi.utwente.nl

Abstract

We discuss behavior planning in the style of the SAIBA framework for continuous (as opposed
to turn-based) interaction. Such interaction requires the real-time application of minor shape
or timing modifications of running behavior and anticipation of behavior of a (human) inter-
action partner. We discuss how behavior (re)planning and on-the-fly parameter modification
fit into the current SAIBA framework, and what type of language or architecture extensions
might be necessary. Our BML realizer Elckerlyc provides flexible mechanisms for both the
specification and the execution of modifications to running behavior. We show how these
mechanisms are used in a virtual trainer and two turn taking scenarios.

Keywords: Continuous interaction, SAIBA, BML realization, virtual humans

1 Introduction
Virtual humans often interact with users using a combination of speech with gestures in a conver-
sational setting. They tended to be developed using a turn-based interaction paradigm, but this
is changing towards a continuous interaction paradigm, where actors perceive acts and speech of
others continuously, and where actors can act continuously, simultaneously and therefore overlap-
ping in time (Nijholt et al., 2008). This raises the question how acting has to be planned; clearly
the traditional “perceive-plan-act” cycle from agent theories does not apply here. Still, it is clear
that (human as well as virtual) actors do perform some form of “action planning”, both for the
long term as well as for the short term. Behavior of interaction partners (real or virtual) is dealt
with by, on the one hand, predicting such behavior and, on the other hand, re-planning and mod-
ifying the virtual human’s own behavior. There are various forms of this revision process, some
more disruptive than others. As an example, consider a fitness trainer that has just identified a
problem in that the group he is coaching starts “lagging” and does no longer follow the correct
tempo of their exercise. A disruptive revision would be to stop the exercise, explain what went
wrong, and to start over again. Although this is certainly a possible solution, we propose a more
subtle, preferred, approach, where the trainer starts moving a little faster, and a little ahead of
the group in order to try to speed up the tempo of the group. Within the SAIBA framework for
behavior planning, shown in Figure 2, the first approach requires a revision of intents, followed by
re-planning speech and bodily behavior.

Our alternative approach circumvents this and applies a more direct revision of bodily behavior,
based upon (short term) prediction by means of so called Anticipators, combined with corrective
adjustments of already ongoing behavior. This leads to a flexible planning approach in which part
of the planning can be done beforehand, and part has to be done “on the fly”. In the latter case,
parts of the behavior have been executed already, and other parts can still be modified. We focus
on the specification (both of the plan itself and of changes to the plan) and execution of such
flexible plans. We provide abstractions for the prediction of sensor input and show how we can
synchronize our output to these predictions in a flexible manner. To demonstrate the feasibility
of the multimodal output generation part of our system without having to invest a lot of work in
the sensing part, we have implemented placeholders for the predictors.

In this paper, we present several scenarios in which continuous interaction is achieved using
small adjustments in the timing and shape of behaviors (for example: gesture or speech) while it
is being executed by a virtual human. We show how such small adjustments can be specified and
how we implemented these behaviors in our behavior realizer Elckerlyc. We intend to demonstrate
our implementation in the demo session of the workshop.

2 Elckerlyc’s Architecture
We base our architecture (see Figure 2) on the SAIBA Framework (Kopp et al., 2006), which
contains a three-stage process: communicative intent planning, multimodal behavior planning,
resulting in a BML stream, and behavior realization of this stream. Elckerlyc encompasses the
realization stage. It takes a specification of the intended behavior of a virtual human written in
the Behavior Markup Language (BML) (Kopp et al., 2006) and executes this behavior through
the virtual human. The BML stream contains behaviors (such as speech, gesture, head movement
etc.) and specifies how these behaviors are synchronized. Synchronization of the behaviors to each
other is done through BML constraints that link synchronization points in one behavior (start,
end, stroke, etc; see also Figure 1) to synchronization points in another behavior. BML can be
used to add new behaviors or remove running behaviors, but does not contain mechanisms to
slightly modify behavior that is already running. However, we argue that some desired changes
to planned behavior are only on their timing or parameter values (speak louder, increase gesture
amplitude) and should not lead to completely rebuilding the animation or speech plan. Such
small adaptations of the timing of or shape of planned behavior occur in conversations and other
interactions (Nijholt et al., 2008).

Figure 1: Standard BML synchronization points (picture from http://wiki.mindmakers.org/
projects:bml:main)

There is typically a planning delay between sending a BML stream to the Behavior Realizer
(Elckerlyc in our case) and the realization of this stream. By fine-tuning running or planned be-
haviors rather than re-planning the complete behavior plan when only small changes are required,
we avoid this planning delay and allow fluent and timely behavior execution. Others have used
similar mechanisms for incremental planning in gesture/speech synthesis: Kopp and Wachsmuth
(2004) make use of an incremental planning mechanisms that allows the late planning of transitions
between segments of gesture and speech, which are highly context dependent (depending on cur-
rent gesture and the next gesture), but for which some parts can be pre-planned (e.g. the speech
synthesis). In human-human behavior, there is some evidence of similar pre-planning mechanisms
(Nijholt et al., 2008), for example to allow rapid overlaps between turns in a dialog. We extend
BML to allow the specification of synchronization to anticipated timing of external events (from
the environment, or other (virtual) humans). Elckerlyc allows partial pre-planning of behavior
that is timed to such events. The timing of such behavior is refined and completed continuously,
while keeping inter-behavior constraints consistent.

To achieve this incremental temporal control, we introduced Time Pegs and Anticipators. BML
specifies constraints between behaviors, indicating that their synchronization points should occur
at the same time. We maintain a list of Time Pegs – symbolically linked to those synchronization
points that are constrained to be on the same time – on the Peg Board, together with the current

�����

�������

	
�����

�����

�������

	
�����

��� ���

�����������������

������

�����

����������������

������

�������

��������������

������������������

���������������

�
� ��
!�

"���

���
�����
��

�����������
��

��������	

�������
��

�������������

�����

��������

������

���������	
�!��
�����	
�!��

���������

	
�����

�����

	
�����

�
� ��
!�
����������������

Figure 2: Elckerlyc architecture and its location within the SAIBA framework

expectation of their actual execution time (which may change at a later time and can be unknown).
Interaction with the world – and conversation partner – is achieved through Anticipators. An

Anticipator instantiates Time Pegs that can be used in the BML stream to constrain the timing of
behaviors. This is specified in a similar manner as BML constraints: a synchronization point of a
behavior is linked to the synchronization point of an Anticipator (as identified by the Anticipator
id and its TimePeg id, see Figure 3, 4 for some examples). The Anticipator uses sensors that
perceive events in the real world to continuously update the Time Pegs, by extrapolating the
perceptions into predictions of the timing of future events.

Several feedback loops between user and agent behavior can exist in the SAIBA framework. The
SAIBA Intent Planner makes use of interpreted user behavior to decide on the Intent of actions that
are to be executed by the virtual human (indicated with the black arrows in Figure 2). Bevacqua
et al. (2009) argue for another feedback loop (indicated with the gray arrows), using sensor-
activated unconscious and unintentional (so not originating from the Intent Planner) behavior in
the Behavior Planner. One example of such behavior is mimicry, which they propose to implement
by submitting new BML to the Realizer, which then has to be re-planned. In this paper we
demonstrate the need for an even tighter feedback loop (indicated with the white arrows) which
allows small modifications based on user observations to be made to running behaviors directly,
without the need for re-planning behavior. Similar layered feedback loops between a user and a
virtual human occur in the Ymir system (Thórisson, 2002).

�������

������	

�����	

������	
���	�����������

�����	���

����	�	������

���	�����

��������

��	����

��������

�����	

������	
���	���

����	����

�����

��������	
�	������

�����

�����	

 ��	

���������!�������

"	����

�	���	

<bml id="bml1">
<bmlt:procanimation id="exercise1" name="squat-jump"/>
<constraint id="c1">
<synchronize ref="exercise1:squatdown">
<sync ref="exerciseAnticipator:squatdown-0.5"/>

</synchronize>
<synchronize ref="exercise1:jumpstart">
<sync ref="exerciseAnticipator:jumpstart-0.5"/>

</synchronize>
...

</constraint>
</bml>

Figure 3: Exercise scenario. exercise1:squatdown and exercise1:jumpstart refer to the
squated down position and the start of the jump in the squat-jump exercise animation respec-
tively. exerciseAnticipator:squatdown and exerciseAnticipator:jumpstart refer to the an-
ticipated timing of squatdown and jumpstart as predicted by movement of the user.

Elckerlyc can be used as a black box that converts BML into multi-modal behavior for a VH.1

If required however, direct access to the Scheduler, Planners, Plans and Players is also available.
Some of this functionality is used in the demo scenarios described in this paper to adapt the
parameter values of ongoing behavior (e.g. speak louder). We refer the reader to (van Welbergen
et al., 2010) for a extensive explanation of Elckerlyc’s architecture.

3 Scenarios

3.1 Guiding Exercise Tempo
A virtual (fitness) trainer executes an exercise together with a human user in a certain tempo.
The trainer would like to increase the tempo that the user is moving in. A subtle technique to
achieve this is to move in the same tempo as the user but slightly ahead of him, so he constantly
has the feeling of being ‘too late’ in his movements (a similar technique is used by our virtual
conductor to guide the tempo of a real orchestra (Reidsma et al., 2008)). We assume that an
Anticipator can be designed that can perceive the tempo a user is exercising in and from this
information extrapolates future exercise time events 2. By making use of the time predictions of
this Anticipator, we can specify the trainer’s movement to be slightly ahead of them. Note how
the availability of a specific Anticipator, and its exact implementation, are application dependent.

1This functionality will be shown in our demo and can be tested from the Elckerlyc webstart at http://hmi.

ewi.utwente.nl/showcase/Elckerlyc.
2In our demo we fake these perceptions by using space bar presses instead. For simple fitness exercises one could

use, e.g., accelerometers attached to the wrists and ankles of the user, detecting the tempo from the peak structure
in the accelerations. Future peak points are then predicted by extrapolating the average tempo of the last few peak
points in the exercise performed by the user.

�������

������	

�����	

������	
�������	���	�������

������

�������	�

������	��	�

�����������

���
�������������

�	��������	���������

�����	

������	

����������

���	�������

��������

��������	

 ����� ���

!�������	
�	������

��������

 ����	
"	����

#����

���������$�������

%��	

<bml id="bml1">
<speech id="speech1" start="speechStopAnticipator:stop+x">
<text>Bla bla</text>

</speech>
</bml>

Figure 4: Taking the turn

Figure 3 illustrates this scenario. From interpretation of sensor values (for example: heart
rate), the Intent Planner is informed that the current exercise is too easy. It decides to increase the
exercise difficulty. The Behavior Planner selects a strategy to achieve this: it decides to gradually
increase the tempo of the exercise. This is realized using the strategy described above. This
strategy is encoded in the BML block shown in Figure 3. This block describes how synchronization
points of a procedural exercise animation (exercise1) are synchronized to be slightly ahead (0.5
seconds) of the anticipated synchronization points in the exercise as executed by the user. Each of
these synchronization points is linked to a Time Peg. The timing of these Time Pegs is continuously
updated using the perceived tempo of the user in the feedback loop on the right, so that the trainer
keeps on moving ahead of the user, even when the tempo of the user changes. Of course, if the
tempo of the user deviates really too much from the desired tempo, the Intent Planner might still
decide on a different exercise strategy, such as choosing a completely different exercise.

3.2 Turn Taking in Speech
3.2.1 Taking the Turn

Humans can take the turn at different moments, for example, slightly before their interaction
partner stops speaking, at exactly the moment their interaction partner stops speaking, or slightly
after their interaction partner stops speaking. The turn taking strategy used can modulate the
impression of politeness, friendliness and arousal of the virtual human (ter Maat and Heylen,
2009). We assume that we can design an anticipator that can predict the end of speech of a
user3, called the speechStopAnticipator. Figure 4 illustrates a turn taking scenario. The Intent
Planner decides to take the turn and perform a communicative act. The Behavior Planner selects
a turn taking strategy, based on the politeness, arousal and friendliness of the virtual human.
In the illustrated case, it waits for the user to stop speaking and starts speaking after a certain
delay x (could be negative to start speaking slightly before the user stops speaking). To allow an
immediate response of the virtual human to the (anticipated) speech stop of a user, the behavior
is pre-planned, and its start time is synchronized to this (can be currently unknown) anticipated
speech stop. The Behavior Planner thus only specifies that the virtual human starts speaking after
the user stops speaking, and the exact and precisely timed execution of this behavior is handled
by the Behavior Realizer, using the speech stop anticipator.

3.2.2 Keeping the Turn

To keep the turn, one can simply ignore the interruption request of the interaction partner. Al-
ternatively, one can raise the volume of the voice at the moment of the interrupting speech. The
turn keeping strategy used can modulate the impression of friendliness and arousal of the virtual
human (ter Maat and Heylen, 2009). Raising the voice requires a real-time change in parameter

3We currently fake the detection of speech endings by pressing the space bar.

�������

������	

�����	

������	
��������	��

�������	�
������������

�	������

�	���������

�����	

������	

��	����

����������

�������

�	����

 ����

���������!�������

"����	�#

����	�	������

���	�$�������	�

%��	

Figure 5: Keeping the turn

<bml id="bml2" scheduling="tight-merge"/>
<bmlt:setparameter id="reparam1" start="10" end="speech1:end"
target="speech1" parameter="volume" curve="linear" startvalue="25" endvalue="100"/>

</bml>

Figure 6: Change the volume of speech1, starting at absolute time 10, until speech1:end. The
volume ranges from 25 to 100.

values (volume in this case) of the virtual human’s speech. Elckerlyc currently allows this by
providing direct access to the parameter values of each behavior in an animation or speech plan.

Figure 5 illustrates this scenario. The Intent Planner is informed by an interpretation of sensor
values that the user would like to get the turn 3. The Intent Planner decides that the virtual human
would like to keep the turn. Based on the provided politeness, arousal and friendliness values, the
Behavior Planner decides to realize this in intent by increasing the volume of behavior speech1.
Currently this is achieved by an ad hoc function call in the Behavior Realizer.

4 Discussion
We have shown that Elckerlyc’s Anticipators and Time Pegs provide a flexible formalism for both
the specification and the execution of behavior that requires anticipation of the behavior of a
(human) interaction partner. They also provide a flexible pre-planning mechanism for behaviors
that have to be executed at a (to be determined) later time moment.

We have discussed a scenario in which a parameter value change of running behavior is desired
in Section 3.2.2. Currently we apply such parameter value changes in a ad hoc manner. We
change the parameter values of a motion or speech fragment by accessing the animation plan or
speech plan directly and adapting the parameters of the (possibly running) behavior. We then
need to take care of the parameter value curve and the duration of the parameter value change
as well. We are currently exploring more formal methods of parameter change specification and
execution. An interesting method to achieve this is implemented in the Multimodal Presentation
Markup Language (Brügmann et al., 2008): parameter value changes are implemented as an
Action (a concept similar to a BML behavior). This allows one to easily define parameter value
changes outside the Realizer and to specify the synchronization of the change to other behaviors
in a conceptually similar manner as behavior synchronization. Additionally, such a script based
specification of parameter value changes allows easy experimentation with parameter values and
curves. Figure 6 shows how such a parameter value change could be expressed using BML 4.

However, parameter value change as a BML behavior does not match very well with the other
behavior types (gaze, locomotion, speech, etc.) and requires specialized planning mechanisms to
be able to refer to BML elements from previously planned BML blocks. Furthermore, we probably
do not want parameter values to modify synchronization constraints like other behaviors can do,
they simply need to adhere to the timing prescribed by other behaviors. So conceptually it might

4Note that this BML block requires a special scheduling mechanism (tight-merge) to allow it to refer to a
behavior in a previous BML block, see http://wiki.mindmakers.org/projects:bml:multipleblockissue

be nicer to provide a separate (non BML) channel in the Realizer through which a specification of
parameter value changes (the timing of which can depend on timing of BML behaviors and that
can target a specific BML behavior) can be sent.

Acknowledgements
Many of the ideas and issues discussed here emerged during our very interactive talk and visit
of Stefan Kopp’s Sociable Agents Group in Bielefeld, we would like thank the participants for a
fruitful discussion on continuous interaction. We thank Bart van Straalen for his help in refin-
ing the Intent/Behavior planning terminology and Mark ter Maat for explaining his insights on
turn taking strategies. This research has been supported by the GATE project, funded by the
Dutch Organization for Scientific Research (NWO) and the Dutch ICT Research and Innovation
Authority (ICT Regie).

References
Bevacqua, E., Prepin, E., de Sevin, R., Niewiadomski, R., and Pelachaud, C. (2009). Reactive be-

haviors in SAIBA architecture. In Towards a Standars Markup Language for Embodied Dialogue
Acts Workshop at Autonomous Agents and Multi-Agent Systems.

Brügmann, K., Dohrn, H., Prendinger, H., Stamminger, M., and Ishizuka, M. (2008). Phase-
based gesture motion parametrization and transitions for conversational agents with MPML3D.
In INtelligent TEchnologies for interactive enterTAINment, pages 1–6. Institute for Computer
Sciences, Social-Informatics and Telecommunications Engineering).

Kopp, S., Krenn, B., Marsella, S., Marshall, A. N., Pelachaud, C., Pirker, H., Thórisson, K. R.,
and Vilhjálmsson, H. H. (2006). Towards a common framework for multimodal generation: The
behavior markup language. In Intelligent Virtual Agents, volume 4133 of LNCS, pages 205–217.
Springer.

Kopp, S. and Wachsmuth, I. (2004). Synthesizing multimodal utterances for conversational agents.
Comput. Animat. Virtual Worlds, 15(1):39–52.

Nijholt, A., Reidsma, D., van Welbergen, H., op den Akker, H. J. A., and Ruttkay, Z. M. (2008).
Mutually coordinated anticipatory multimodal interaction. In Nonverbal Features of Human-
Human and Human-Machine Interaction, volume 5042 of LNCS, pages 70–89. Springer.

Reidsma, D., Nijholt, A., and Bos, P. (2008). Temporal interaction between an artificial orchestra
conductor and human musicians. Computers in Entertainment, 6(4):1–22.

ter Maat, M. and Heylen, D. (2009). Turn management or impression management? In Intelligent
Virtual Agents, volume 5773 of LNCS, pages 467–473. Springer Verlag.

Thórisson, K. R. (2002). Natural turn-taking needs no manual: Computational theory and model,
from perception to action. In Multimodality in Language and Speech Systems, pages 173–207.
Kluwer Academic Publishers, Dordrecht, The Netherlands.

van Welbergen, H., Reidsma, D., Ruttkay, Z. M., and Zwiers, J. (2010). Elckerlyc: A BML
realizer for continuous, multimodal interaction with a virtual human. To Appear in Journal on
Multimodal User Interfaces.

